

The impact of the heating mix on DEMO plasmas

G. Suárez López^{*,1}, E. Fable¹, G. Tardini¹, H. Zohm^{1,2}, and the EUROfusion MST1 Team³

¹*Max Planck Institute for Plasmaphysics, Boltzmannstraße 2, 85748 Garching bei München, Germany.*

²*Ludwig Maximilian University of Munich, Geschwister-Scholl-Platz 1, 80539 München, Germany.*

³*See the author list of “B. Labit et al., 2019 Nucl. Fusion **59** 086020”*

^{*}*guillermo.suarez@ipp.mpg.de*

The development of the EU-DEMO reactor is at the pre-conceptual design phase. At this stage, close attention is paid to the heating mix necessary to fulfill all the plasma requirements: breakdown, ramp-up, L-H transition, burn control, NTM stabilization, sawteeth pacing, radiative instability control and ramp-down. Integrated modeling is an effective tool to compare the impact of dominant electron vs. ion heating on turbulence and plasma kinetic profile evolution. Thus, the ability of a given heating mix to meet the aforementioned requirements can be systematically studied. We have utilized the ASTRA [1] transport code, coupled to the TGLF [2] turbulent transport model to compare the plasma response to dominant electron and ion heating mixes representative of ECRH, NBI and ICRF in L- and H-mode conditions. The H-mode pedestal is treated with scaling laws coupled to the core parameters. Suitable boundary conditions are applied at the separatrix via a 0D 2-point model. Initial estimations [3] point to the feasibility of the L-H transition and significant fusion power production even in purely electron-heated plasmas. This work has now been revised and extended through the inclusion of impurities, thus setting a concentration threshold for the L-H transition, and TGLF-predicted electron density profiles. These results are further compared against cases with predominant ion heating to assess differences in performance.

References

- [1] G. V. Pereverzev and P. N. Yushmanov. *Automated System for Transport Analysis*. Tech. rep. 5/98. Garching bei München: Max-Planck-Institut fur Plasmaphysik, 2002.
- [2] G. M. Staebler et al. “A model of the saturation of coupled electron and ion scale gyrokinetic turbulence”. In: *Nuclear Fusion* **57**.6 (2017).
- [3] G. Suárez López et al. “On the feasibility of Ti collisional heating and Te/Ti control on DEMO using ECRH”. In: 62nd Annual Meeting of the APS Division of Plasma Physics, 2020.